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system. This method will be refered to as the HFKS method. It involves a local effective 
exchange potential Vx = SEx[n]/Sn(r) where the effective exchange energy Ex is a univer­
sal functional of the electron density nCr). Only approximate forms of Ex and Vx are 
known. The Kohn and Sham approximation VXKS (= 2/3 Slater's potential) is valid for 
electron systems with slowly varying density (as in heavy atoms) but cannot be used in 
principle in band calculations where wave numbers q larger than kF are quite significant 
(Geldart and Vosko 1966). 

The HF test particle static dielectric function €(q) and the HF electron dielectric func­
tion E(q) of a homogeneous electron gas (Kleinman 1967, Shaw 1970) are directly related 
to the HF density response to an external potential. They are exactly given by the linearized 
HFKS equations, since the Kohn and Sham method allows an exact calculation of the 
ground state HF energy functional and its derivatives, such as the density and the Fermi 
level. A simple calculation (Harrison 1969) gives 

v(q) 7To(q) 
€(q) = 1 + 1 + X(q) 7To(q) 

£(q) = 1 + {v(q) + X(q)}7TO(q) 

(I) 

(2) 

where v(q) is the direct interaction function 4rre2Jq2, 7To(q) the RPA static screening function 
and X(q) the effective exchange interaction defined by equation (5) below. 

We use a new variational method for Ex[n] (Dagens 1971; this paper will be referred to 
as I), to derive an upper bound for X(q) and, as a consequence, a lower bound for €(q) and 
upper bound for E(q), which are exact in the HF scheme. 

An inequality verified by Ex[n] is given first. The derivation is given in 1. The exact 
solution of the HFKS equation is known to be a functional 4>,,[n j of nCr) (Hohenberg and 
Kohn 1964) which satisfies identically equation (3). Let tP,,[n] be a trial wave function 
which satisfies 

oce oce 
~ I .p,,[n] 12 = n = ~ 1 4>k[n]12. (3) 
ku ku 

We denote by ~x{.p,,} the well known expression of the true exchange energy and by 
T {.p,,} the total kinetic energy. The fundamental formula is then 

(4) 

The equality is obtained when the trial wave function is identical (as a functional of n) to 
the exact HF wave function. The second member is then stationary. It must be noted that 
the value of Ex is generally not equal to the true exchange energy. 

We consider an electron gas perturbed by a small external potential AVo(r). The effective 
exchange energy Ex[n] can be written (Harrison 1969) as 

Ex[n] = ExO(no) + ~~' Inql2 X(q) + 0(A3) 
q 

(5) 

where ExO(no) is the exchange energy of the homogeneous system and X(q) the effective 
exchange interaction. The summation is over all nonzero wave vectors q, and nq is the 
Fourier coefficient of the density (mean value of nCr) exp( - iq.r). Let aq(k) be the Fourier 
coefficient of 4>k exp( - ik.r), with the following normalization 

ao(k)2 = 1 - ~'laq(k)12. (6) 
q 

aik) and nq are known to be first order quantities in A. A simple calculation leads to 

_2m ~ ~ (2) 
aq{k) - n2 Ik + ql2 _ k27TO(q) + 0 A (7) 

when q ¥= O. 
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example, by comparing the calculations of Hurst (1959) for LiH with the observed structure 
factors, Calder et al. (1962) obtained R = 0·02 which shows an order of magnitude better 
agreement. 

Phillips and Weiss (1969) measured the Compton profile of LiH using Mo Koc X rays 
scattered along three different crystallographic directions. Since they did not obtain ap­
preciable anisotropy, they averaged their results over the three directions. The Compton 
profile is the projection of the electron momentum distribution on the direction of the 
momentum transfer. It is given by 

CX> 

J(POz) = 2'IT J I X(Po) I 2podpo (4) 

Po. 

where Poz is the projection of the initial electron momentum po on the momentum transfer 
direction z. Assuming s like wave functions, we have 

CX> 

x{Po) oc f P(r)jo{por)rdr (5) 

o 

We calculated the Compton profile of LiH using equation (4) and (5), and the wave functions 
of Kunz. In figure 1 we compare these calculations with the experimental curve of Phillips 
and Weiss. It is seen again that there is marked disagreement b~tween experiment and the 
wave functions calculated by Kunz. 
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Bounds for the Hartree-Fock effective exchange interaction and 
the static dielectric constants 

Abstract. We use a variational form of the Kohn and Sham general effective exchange 
energy to derive an upper bound for the effective exchange interaction. Exact bounds 
(within the Hartree-Fock scheme) are deduced for the usual (test particle) static 
dielectric constant and the electron-dielectric constant. 

Kohn and Sham (1965) showed that a Hartree-Fock-Slater like method (Slater 1951) 
allows an exact calculation of the Hartree-Fock (HF) ground state energy of an electron 


